36 research outputs found

    Grid Added Value to Address Malaria

    Get PDF
    Through this paper, we call for a distributed, internet-based collaboration to address one of the worst plagues of our present world, malaria. The spirit is a non-proprietary peer-production of information-embedding goods. And we propose to use the grid technology to enable such a world wide "open source" like collaboration. The first step towards this vision has been achieved during the summer on the EGEE grid infrastructure where 46 million ligands were docked for a total amount of 80 CPU years in 6 weeks in the quest for new drugs.Comment: 7 pages, 1 figure, 6th IEEE International Symposium on Cluster Computing and the Grid, Singapore, 16-19 may 2006, to appear in the proceeding

    Large scale deployment of molecular docking application on computational grid infrastructures for combating malaria

    Get PDF
    PCSVInternational audienceComputational grids are solutions for several biological applications like virtual screening or molecular dynamics where large amounts of computing power and storage are required. The WISDOM project successfully deployed virtual screening at large scale on EGEE grid infrastructures in the summer 2005 and achieved 46 million dockings in 45 days, which is equivalent to 80 CPU years. WISDOM is one good example of a successful deployment of an embarrassingly parallel application. In this paper, we describe the improvements in our deployment. We screened ZINC database against four targets implicated in malaria. During more than 2 months and a half, we have achieved 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tool

    Grid enabled high throughput virtual screening against four different targets implicated in malaria

    Get PDF
    PCSVInternational audienceAfter having deployed a first data challenge on malaria and a second one on avian flu, respectively in summer 2005 and spring 2006, we are demonstrating here again how efficiently the computational grids can be used to produce massive docking data at a high-throughput. During more than 2 months and a half, we have achieved at least 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tools; in this case it is the FlexX commercial docking software which is used to dock the whole ZINC database against 4 different targets

    Large Scale In Silico Screening on Grid Infrastructures

    Get PDF
    Large-scale grid infrastructures for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale in silico docking within the framework of the WISDOM initiative against Malaria and Avian Flu requiring about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large-scale grid infrastructures for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in the proceeding

    Grid enabled virtual screening against malaria

    Get PDF
    34 pages, 5 figures, 3 tables, to appear in Journal of Grid Computing - PCSV, à paraître dans Journal of Grid ComputingWISDOM is an international initiative to enable a virtual screening pipeline on a grid infrastructure. Its first attempt was to deploy large scale in silico docking on a public grid infrastructure. Protein-ligand docking is about computing the binding energy of a protein target to a library of potential drugs using a scoring algorithm. Previous deployments were either limited to one cluster, to grids of clusters in the tightly protected environment of a pharmaceutical laboratory or to pervasive grids. The first large scale docking experiment ran on the EGEE grid production service from 11 July 2005 to 19 August 2005 against targets relevant to research on malaria and saw over 41 million compounds docked for the equivalent of 80 years of CPU time. Up to 1,700 computers were simultaneously used in 15 countries around the world. Issues related to the deployment and the monitoring of the in silico docking experiment as well as experience with grid operation and services are reported in the paper. The main problem encountered for such a large scale deployment was the grid infrastructure stability. Although the overall success rate was above 80%, a lot of monitoring and supervision was still required at the application level to resubmit the jobs that failed. But the experiment demonstrated how grid infrastructures have a tremendous capacity to mobilize very large CPU resources for well targeted goals during a significant period of time. This success leads to a second computing challenge targeting Avian Flu neuraminidase N1

    Virtual Screening on Large Scale Grids

    Get PDF
    PCSV, article in press in Parallel ComputingLarge scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment

    WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the <it>Plasmodium </it>parasite, some are promising targets to carry out rational drug discovery.</p> <p>Motivation</p> <p>Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase.</p> <p>Methods</p> <p>In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate <it>in silico </it>docking and in information technology to design and operate large scale grid infrastructures.</p> <p>Results</p> <p>On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, <it>In vitro </it>results are underway for all the targets against which screening is performed.</p> <p>Conclusion</p> <p>The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.</p

    Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.</p> <p>Methods</p> <p>A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and <it>de novo </it>molecular design.</p> <p>Results</p> <p>Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified <it>in silico </it>and tested <it>in vitro</it>; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.</p> <p>Conclusions</p> <p>Gradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for <it>de novo </it>design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.</p

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
    corecore